
50 The Delphi Magazine Issue 33

Delphi Meets COM: Part 6
by Dave Jewell

The best laid plans of mice and
men don’t always work out as

one would hope, and the same is
certainly true of programmers and
computer journalists! At the end of
last month’s instalment, I men-
tioned my plans to do something
naughty with the Delphi IDE. In
essence, I intended to convert the
IDE into an OLE Automation server.
The idea was that a client applica-
tion would be able to drive the IDE
on ‘auto-pilot’, so to speak, access-
ing many of the Open Tools good-
ies that we’ve come to know and
love. Well, that was the idea, and
things were looking good until I dis-
covered that the COMSERV unit
(which is rather vital for imple-
menting Automation servers) can’t
be compiled into a package. Oh
well, it seemed like a good idea at
the time...

I’m still pondering this and may
well come back to it, but in the
meantime let’s move swiftly on and
take a look at ActiveX controls. As I
may have mentioned before, an
ActiveX control (OCX) is essen-
tially a specialised in-process COM
server. It lives in the same address
space as the container application
and communicates with the con-
tainer through a number of special-
ised interfaces. In Delphi, ActiveX
controls are descendants of the
TActiveXControl class.

As you’ll no doubt appreciate,
the simplest way of creating an
ActiveX control is to convert an
existing VCL component into an
OCX using Borland’s ‘One Touch’
ActiveX technology. In practice,
you’ll often find that more than one
‘touch’ is required! This is because,
as I mentioned last month, only
certain data types are automation-
compatible, so a converted VCL
may have certain properties miss-
ing when it comes out of the
ActiveX sausage machine.

Introducing TDesktop
Let’s put all this into concrete
terms by taking a VCL component

and putting it through the ActiveX
conversion process. Rather than
using an existing VCL component,
which would be cheating, I decided
to create a sample component
from scratch. The source code to
this, TDesktop, is given in Listing 1.
This is a ‘for fun only’ component
that doesn’t do anything terribly
useful: it’s for illustrative purposes
only. The only purpose of TDesktop
is to allow you to programmatically
modify certain display attributes
of the Windows desktop, in par-
ticular the colour and the font used
to display the text under the icons.

Although you may not be aware
of it, the Windows desktop is actu-
ally implemented using a standard
listview control (I’m obviously
talking about the low-level API
implementation of the listview
control, not the VCL wrapper for
the listview control which sits on
Delphi’s component palette).
Microsoft also used the listview
control inside Windows Explorer:
you can see it being used in the
right hand Explorer pane. It’s
pretty obvious that Explorer is
using listview controls, but things
are much less obvious in the case
of the desktop. There’s no control
‘background’ and each icon seems
to have a life of its own. Neverthe-
less, the entire desktop is indeed
managed by one control; the key
question is how we get access to it?

The technique I present here is
not my own. I first saw it used in
one of the sample programs that
comes with the pre-release version
of Visual J++ 6.0 [Don’t miss Dave’s
review of this in June’s Developers
Review! Ed], converted it into
Delphi code and have unasham-
edly incorporated it into the TDesk-
top component.

The relevant code appears in the
constructor method of TDesktop.
Here, a handle to the desktop
window is first retrieved through a
call to GetDesktopWindow. Then, the
FindWindowEx routine is used to
enumerate the child windows of

the desktop, looking for a window
with class Progman and name Pro-
gram Manager. This identifies the
hidden shell itself, which you
shouldn’t confuse with the old
Windows 3.1 Program Manager.
The reason why the shell window
uses these names is for backward
compatibility: some old installer
programs look for a window of this
name and class and then direct
DDE messages to the window in
order to create program manager
groups. Under Windows 95, these
DDE messages are intercepted and
the equivalent Start menu entries
are created instead.

Next, the code looks for a child
window of the Progman window,
searching for a class name of
SHELLDLL_DefView. This corre-
sponds to the default view of the
Windows Explorer. Finally, the
children of this window are enu-
merated in order to find a control
which has the class SysListView32.
If you’re familiar with the underly-
ing common controls DLL, you’ll
know that this is the API-level class
name of the listview control.

Once we’ve got a handle to this
control, we can do all sorts of inter-
esting things with it, as defined in
the COMMCTRL.PAS file. In that unit,
you’ll find a number of lvm_xxxx
constants which correspond to
different messages that can be
sent to the control. As a simple
example, you’ll see that the TDesk-
top component implements a
read-only property called Item-
Count. This returns the total
number of items present on the
Windows desktop. This property
is implemented through the pri-
vate GetItemCount method which,
in turn, calls the ListView_GetItem-
Count routine defined in COMMCTRL.
This routine sends a lvm_GetItem-
Count message to the listview con-
trol using the SendMessageAPI call.

In the same way, there’s a Text-
Color and a TextBackgroundColor
property which provide access to
the icon text colour (and

52 The Delphi Magazine Issue 33

➤ Listing 1

background colour) respectively.
Again, these properties work by
sending lvm_xxxx messages to the
desktop listview window in order
to set and query attributes of the
control. One interesting wrinkle
here is the listview control’s ability
to display icon text with a transpar-
ent background. In other words,
display text where the window
background shows through. This
is done by passing an invalid
colour value of $ffffffff to the list-
view control, using the lvm_Set-
TextBkColor message. Rather than
relying on the developer under-
standing the special significance of
this ‘colour value’ I decided to
‘overload’ the meaning of the pre-
defined colour value clNone. Thus,
when the SetTextBackgroundColor
routine detects that a value of
clNone is being passed, it converts

it to the ‘magic’ value before pass-
ing to the listview window. This is
an interesting example of achiev-
ing some effect through API-level
manipulation that you couldn’t
duplicate if, for example, you were
simply working with the VCL list-
view ‘wrapper’. See Figure 1 for an
example of what the effect looks
like, with a suitably scenic excerpt
from my desktop!

Finally, the TDesktop control also
exposes a Font property which, as
you’d expect, can be used to
directly alter the font used for dis-
playing icon titles. All sorts of inter-
esting psychedelic effects can be
achieved by using over-large, deco-
rative fonts for your Windows
desktop! The SetFont method
works by passing the selected font
to the control with the standard
Windows wm_SetFont message, a
technique which works with all the
Windows common controls.

Once again, I must emphasise
that this component is provided
for illustrative purposes only. In a
serious TDesktop component,
you’d want to change the persis-
tent state of the desktop rather
than simply alter the desktop
appearance on the fly. As it is, no
matter what wacky things you do
to your desktop, sanity will be
restored when you restart Win-
dows, which is probably just as
well!

TComponent? Just Say No...
You may already have noticed one
odd thing about the TDesktop com-
ponent. Although this is, to all
intents and purposes, a non-visible
component, I’ve derived it from
TCustomControl instead of from
TComponent. What’s the reason for
this? I specifically did things this
way because Delphi’s ActiveX con-
trol wizard will ignore non-visible

unit Desktop;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs;

type
TDesktop = class (TCustomControl)
private
fListView: hWnd;
fFont: TFont;
function GetItemCount: Integer;
procedure SetItemCount (Value: Integer);
procedure SetTextColor (Value: TColor);
function GetTextColor: TColor;
procedure SetTextBackgroundColor (Value: TColor);
function GetTextBackgroundColor: TColor;
procedure SetFont (Value: TFont);

protected
procedure Paint; override;

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property Font: TFont read fFont write SetFont;
property ItemCount: Integer read GetItemCount
write SetItemCount;

property TextColor: TColor read GetTextColor
write SetTextColor;

property TextBackgroundColor: Tcolor
read GetTextBackgroundColor
write SetTextBackgroundColor;

end;
procedure Register;
implementation
uses CommCtrl;
constructor TDesktop.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
Width := GetSystemMetrics (sm_CxIcon);
Height := GetSystemMetrics (sm_CyIcon);
Visible := False;
fFont := TFont.Create;
// Start with the desktop window
fListView := GetDesktopWindow;
// Search through desktop children for the shell
fListView := FindWindowEx (fListView, 0, 'Progman',
'Program Manager');

// Search shell's children for the shell default view
fListView := FindWindowEx (fListView, 0,
'SHELLDLL_DefView', Nil);

// Finally, get the listview that's inside the shell
// default view
fListView :=
FindWindowEx (fListView, 0, 'SysListView32', Nil);

end;
destructor TDesktop.Destroy;

begin
fFont.Free;
Inherited;

end;
procedure TDesktop.Paint;
begin
if csDesigning in ComponentState then
DrawIcon(Canvas.Handle, 0, 0, LoadIcon(0, idi_WinLogo));

end;
procedure TDesktop.SetFont (Value: TFont);
begin
fFont.Assign (Value);
SendMessage(fListView, wm_SetFont, fFont.Handle,
Integer(True));

end;
procedure TDesktop.SetTextColor (Value: TColor);
begin
Value := ColorToRGB (Value);
if Value <> GetTextColor then begin
ListView_SetTextColor (fListView, Value);
InvalidateRect (fListView, Nil, True);

end;
end;
function TDesktop.GetTextColor: TColor;
begin
Result := ListView_GetTextColor (fListView);

end;
procedure TDesktop.SetTextBackgroundColor (Value: TColor);
begin
// If wanted color is clNone, interpret as Transparent
if Value = clNone then Value := $ffffffff else
Value := ColorToRGB (Value);

if Value <> GetTextBackgroundColor then begin
ListView_SetTextBkColor (fListView, Value);
InvalidateRect (fListView, Nil, True);

end;
end;
function TDesktop.GetTextBackgroundColor: TColor;
begin
Result := ListView_GetTextBkColor (fListView);

end;
function TDesktop.GetItemCount: Integer;
begin
Result := ListView_GetItemCount (fListView);

end;
procedure TDesktop.SetItemCount (Value: Integer);
begin
// Read only property

end;
procedure Register;
begin
RegisterComponents ('Samples', [TDesktop]);

end;
end.

May 1998 The Delphi Magazine 53

➤ Figure 1:
The hills are alive...
with the sound of
ActiveX control
development!
Here's a close up
of what your
desktop will look
like if you use the
undocumented
listview control
feature whereby
it's possible to set
a transparent
background colour
for the icon text

components when giving you a list
of possible VCL classes from which
to derive your new ActiveX compo-
nent. Personally, I think this is a
rather irritating state of affairs, but
doubtless there’s some legitimate
reason hidden inside Borland’s
ActiveX control framework.

Anyway, because I derived from
TCustomControl, I also added a little
bit of code to give an initial height
and width to the control, and a
Paint procedure so that the Win-
dows logo icon would be used to
identify the control when using it
on a design-time form. With all this
in place, we’re ready to convert our
new control into an ActiveX
component and see what happens.

To do this, just close your exist-
ing project (if any), open a new
ActiveX library project, save it, and
then create a new ActiveX control
using the control wizard, (see
Figure 2). Once you click OK, Delphi
will generate a number of source
files and a type library for the con-
trol. If you then Build the project,
you’ll end up with a 284Kb OCX
control. This reduces to an impres-
sively sylph-like 31Kb if you build
using runtime packages.

Incidentally, referring back to
Figure 2, you’ll notice that there
are three checkboxes associated
with the ActiveX control wizard.
The first, Include Design-Time
License, is used to ensure that a
control will not operate in design
mode unless an appropriate
license file (with the extension

➤ Figure 2: The ActiveX control wizard has a deceptively simple-
looking interface, but its implementation requires a large amount
of code in the Delphi IDE. Here, we've specified that our control
should have an About box, and we've indicated that the IDE should
include a standard Windows VERSION resource in the OCX file

.LIC) is present. This prevents
unscrupulous developers from
incorporating your control into a
new program after having discov-
ered it as part of the runtime sup-
port of some other application. If
you click this checkbox, the
ActiveX control wizard will auto-
matically generate an appropriate
.LIC file entry and will add the nec-
essary checking logic to the OCX
file itself.

You’ll also see another check-
box marked Include About Box. If

you check this box Delphi will
include another form into your
OCX project. This form imple-
ments an About box for the control
and is called when (for example)
the developer clicks your control’s
About... property in Visual Basic’s
property inspector.

Finally, there’s another check-
box marked Include Version
Information. If checked, this will
include a standard Windows
VERSION resource into your OCX
file. According to the Borland
documentation, Visual Basic 4.0
will refuse to load an OCX control
unless it contains version informa-
tion, so it’s a good idea to always
check this box. Just as
importantly, by including a ver-
sion resource in your ActiveX con-
trol, it makes it possible to expose
version numbers and copyright
notices to developers who use
your control.

Once you’ve built the OCX con-
trol, the next step is to register it.
You can do this without leaving the
IDE by choosing the Register
ActiveX Server menu item from the
Run menu. When you do this, the
Delphi IDE registers the control
just as it would be registered on
the end-user’s machine. In other

54 The Delphi Magazine Issue 33

words, the IDE looks for a routine
inside the OCX called DllRegis-
terServer, and calls it. This has the
effect of registering the OCX
control with the system registry.

At this point, you can fire up
another development system,
such as Visual Basic, and try out
the TDesktop control, now trans-
mogrified into the AxDesktop con-
trol. Assuming you’re working with
VB 5, launch the development
system, create a new EXE-style
project and right click on the VB
component palette. Click the Com-
ponents... entry in the context
menu and you’ll find yourself in the
Components dialog. This will give
you a list of all registered OCX con-
trols which should include, all
being well, an entry called AxDesk-
top Library. If you click this item
and press the OK button, you’ll see
that an XDesktop control has
appeared on the palette. You can

now manipulate the TextColor and
TextBackgroundColor properties
just as you did in the original VCL
control, and you’ll see that the Win-
dows desktop dutifully redraws
itself to match the property
changes that are made. Success!

Conversion Issues:
Time For A Massage?
Before you rush out and tell all
your friends that you’re a real
whizz at creating ActiveX controls,
you need to take a long hard look at
XDesktop as seen from the Visual
Basic Property Inspector, (Figure
3). For example, you’ll notice that
the Visible property of the control
defaults to True, which isn’t what
we want. There’s also an Enabled
property, a Cursor property and
other things that we’d prefer to
eliminate. The ItemCount property
seems to have become read/write
(although, mercifully, assigning a
value to it is ignored!) and changes
to the Font property are politely
ignored. Obviously, a certain
amount of massaging is called for!

If you’ve had much experience of
writing Delphi components, you’ll
know that it isn’t possible to make
a property declaration less visible
in a derived class than it already
was in the ancestor class. In con-
crete terms, we can’t go back to the
source code of TDesktop, incorpo-
rate a property declaration for the
Cursor property (for example) into
the private part of the class and
expect the Cursor property to
become invisible. The code will
compile, but things will look just
the same in Delphi’s Object
Inspector and in Visual Basic’s
Properties window. Obviously,
some other approach is needed.

The key, of course, is the type
library. If you open up the ActiveX
library project which contains the
XDesktop control, you should then
be able to access the type library
from the View|Type Library menu
option. Once the type library
editor has appeared, open the
IXDesktop interface in the editor
and delete the Cursor property. If
the XDesktopImpl unit isn’t cur-
rently loaded into the IDE, the type
library editor will ask if you want to
load it; say Yes. If you now rebuild

the OCX and re-launch VB, you’ll
find that the Cursor property has
disappeared from the Properties
window. Suitably flushed with suc-
cess, you can do the same thing
with the Enabled property.

That’s not quite the end of the
story, though. If you examine the
definition of TXDesktop in the
XDesktopImpl unit, you’ll find that
the Get_Cursor and Set_Cursor
methods are still defined and
weren’t automatically deleted by
the type library editor. You can
safely delete them yourself. The
same is true for the Set_Enabled
and Get_Enabled routines.

Next, take a look at the ItemCount
property in the type library. You’ll
see that it’s defined as being a
read/write property, whereas we
would ideally like it to be read-
only. It’s not surprising that the
ActiveX control wizard made this a
read/write property because I
defined both ‘get’ and ‘set’ rou-
tines in the original VCL control. I
did this because, as you probably
know, the Delphi Object Inspector
won’t display read-only proper-
ties. You have to fool it into think-
ing that it’s dealing with a
read/write property by providing a
dummy ‘set’ routine.

You might imagine that you can
convert ItemCount into a read-only
property by just selecting the
ItemCount property in the type
library editor and selecting read-
only from the associated property
type combobox. But if you do that,
and then rebuild the OCX, you will
then find that ItemCount has
disappeared from Visual Basic’s
Properties window!

Maybe you’re thinking that Item-
Count isn’t a property any more? As
with Delphi, Visual Basic has a
code completion facility and even
though ItemCount is no longer in
the Properties window, you can
verify that it’s still ‘visible’ to VB by
typing something like:

wombat = XDesktop1.ItemCount

As soon as you’ve typed the period
after the component name, VB will
display a list of possible properties
which will include ItemCount. So
what’s going on? The fact is, VB’s

➤ Figure 3: Here's our TDesktop
control, as seen through the
eye of the Visual Basic 5.0
Properties window. This is the
state of play immediately
after running ActiveX control
wizard and building the OCX

56 The Delphi Magazine Issue 33

Properties window is just as coy
about displaying read-only proper-
ties as Delphi’s Object Inspector!
The rule seems to be, ‘if I can’t
tweak it, I’m not going to show it.’

Given that VB won’t display
read-only properties in the Proper-
ties window, this raises the ques-
tion of whether it’s worth tweaking
the type library at all in this spe-
cific case: should we rely on the
fact that the underlying VCL com-
ponent will effectively ignore
assignments to this property, or
should we mark all read-only prop-
erties as such in the type library?
This is really a matter of personal
choice: if you leave the property as
notionally read-write, it will appear
in property browsers, but the
developer who doesn’t read the
documentation will be confused
when his or her property assign-
ment is ignored. If you set the prop-
erty as read-only, it won’t appear in
property browsers and the devel-
opment system will itself flag any
attempt to assign to the property.
In the case of VB 5.0, you’ll get an
error number 450 (Wrong number
of arguments or invalid property
assignment) when the interpreter
tries to execute an assignment to a
read-only property.

On a somewhat different tack,
you’ll notice that VB’s Properties
window has a small area at the
bottom which provides hint infor-
mation on the selected property.
This provides instant feedback to
the programmer on what the prop-
erty does. If you want to provide
this sort of information to users of
your control, it’s very easy to do:
just use the type library editor to
open the IXDesktop interface and
type an entry into the Help String
field for every property, event and
method that’s exposed by the
interface. Rebuild the control,
move back to VB, and all the hint
strings that you’ve specified will
appear in the Properties window.
For a complex OCX with many
properties, events and methods,
this simple step greatly increases
the usability of the control.

Help With Help
While on the subject of providing
help for the developer who uses

your control, you should ideally
include a help file which gives
more detailed information on how
to use the control and documents
each of the exposed properties,
events and methods. Back in the
Delphi type library editor, select
the topmost node of the open type
library tree (for want of a better
name, the odd-looking group of
three squares at the extreme top of
the content pane). Once you’ve
done that, the Attributes pane will
allow you to set ‘global’ attributes
which relate to the entire type
library. This includes the name of
the help file associated with your
control. Enter the name of your
control’s help file here, then
rebuild the OCX and load the con-
trol under Visual Basic. Now, you’ll
find that if you put the control on a
form and (with the control
selected) press the F1 key, Visual
Basic will bring up the help file you
specified. If you want to designate
a particular topic as the introduc-
tory help topic for that control, you
can specify that topic’s help con-
text number in the global attrib-
utes pane for the type library.
Finally, to set an individual help
context number for each property,
method and event, use the help
context edit box in the attributes
pane that’s displayed when a prop-
erty, method or event is selected.

Assuming that you told the
ActiveX control wizard you wanted
an About box, there will already be
a standard Delphi form as part of
your control project. You set this
up in the way you want just as
you’d set up any other Delphi form.
You will almost certainly want to
do this because, as the control
wizard creates it, the copyright
notice states Copyright © 1997
Frank Borland! And if you’re won-
dering who Frank Borland is, suf-
fice it to say that Uncle Sam is to
America as Frank Borland is to Bor-
land (if you have an old version of
Borland’s Resource Workshop,
you might be able to see Frank’s
hat hiding in the About box...).

Incidentally, concerning the way
in which the control wizard creates
the About box, you’ll notice that
the About1 unit (or whatever it hap-
pens to be called) effectively lives

in a world of its own. In other
words, it exports a single entry
point, ShowXDesktopAbout (which
displays the About form), and
doesn’t use any of the
COM/ActiveX related units. This
means that you can’t easily ‘get at’
important information, such as the
version number etc, from the
About box. The simplest way to
rectify this is to add the ComServ
unit to the uses clause of the About
form unit. You’ve then got access
to the various goodies defined by
the ComServer variable.

Conclusion
This month has served as a gentle,
tutorial-based, introduction to
Delphi ActiveX control develop-
ment, the aim being to make you
feel comfortable with the basics of
ActiveX controls. Next month we’ll
be looking in more detail at the
code generated by the ActiveX
control wizard, examining some of
the more important classes in DAX
(the Delphi ActiveX Framework,
which is responsible for imple-
menting ActiveX controls within
the Delphi environment) and the
ways in which DAX greatly
simplifies ActiveX control
creation.

The source code to the TDesktop
VCL component, together with the
ActiveX control project, is
included on this month’s disk. I’ve
included a pre-built version of the
OCX, but please note that, in order
to save disk space, this is the ‘pac-
kaged’ version and requires the
Delphi 3 runtime packages. Also
bear in mind that I’ve only tried
hosting this control under Visual
Basic 5.0: if you encounter prob-
lems with hosting it on other devel-
opment systems, then you’re on
your own!

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave as
Dave@HexManiac.com

	Introducing TDesktop
	TComponent? Just Say No...
	Conversion Issues: Time For A Massage?
	Help With Help
	Conclusion

